Home / Alkyne Halogenation: Bromination, Chlorination, and Iodination of Alkynes
Alkyne 188bet½ð±¦²©¹ÙÍøµÇ¼
Alkyne Halogenation: Bromination, Chlorination, and Iodination of Alkynes
Last updated: November 14th, 2022 |
Halogenation of Alkynes With Cl2, Br2, and I2
- Like alkenes, alkynes can undergo halogenation with Cl2, Br2, or I2.
- When 1 equivalent of the halogen is used, the products of these reactions are trans-dihaloalkenes.
- Addition of a second equivalent of a halogen gives tetrahaloalkanes.
In this post, we’ll do the same for the “3-membered ring pathway”.
If you’ll recall from the series of posts on alkenes, alkenes react with certain electrophiles (such as halogens, among others) to give positively charged bridged intermediates. Common examples are the “bromonium ion” and the “mercurinium ion”. These intermediates then undergo backside attack by a nucleophile, giving products with trans stereochemistry.
So… we might also expect that alkynes, being so similar to alkenes, should also react in a similar fashion. [Of course, as someone who has studied organic chemistry for awhile could tell you, what we “expect” to happen is not always what does actually happen!].
Table of Contents
- Reaction of Alkynes With Cl2, Br2 , and I2
- The Reaction Also Proceeds Through A Bridged-Ion Intermediate, Providing Trans Products
- Comparing the “Three-Membered Ring” Pathway For Alkenes And Alkynes
- Notes
- (Advanced) References and Further Reading
1. Halogenation of Alkynes With Cl2, Br2, and I2
Alkenes undergo halogenation with dihalides such as Cl2, Br2, and I2 . These reactions proceed through positively charged bridged intermediates such as “bromonium” and “chloronium” ions. These intermediates then undergo backside attack by a nucleophile, giving products with trans stereochemistry. (See post: Halogenation of Alkenes)
How do alkynes compare to alkenes with these reagents?
Happily for us, the reaction of alkynes with electrophiles such as Cl2, Br2, and I2 does give very similar results to what is observed with alkenes. For example, treatment of an alkyne with 1 equivalent of Cl2 provides a dichlorinated alkene with the two chlorides opposite to each other, to give us trans-dihalides
If a second equivalent of Cl2 is added, the tetrachloro derivative will form. [Note 1]
So how might this reaction work? Here’s a proposal.
2. Halogenation of Alkynes Also Proceeds Through A Bridged-Ion Intermediate, Providing Trans Products
Just as with alkenes, a π bond from the alkyne can act as a nucleophile, attacking Cl2 and giving rise to a bridged intermediate (halonium ion).
In the next step, chloride ion attacks the carbon from the back face, leading to the trans product.
There is actually a very interesting observation to point out here, but I’ll leave that to the “Notes” section below as it is not absolutely essential for most readers’ purposes. Here’s the teaser, though: alkynes are considerably slower to react than alkenes are. [Note 2].
For our purposes, halogenation of alkynes just about covers the important reactions for the 3-membered ring pathway of alkynes.
Yes, oxymercuration of alkynes proceeds through the 3-membered ring pathway, but as discussed in this earlier post (See post: Hydroboration and Oxymercuration of Alkynes) treatment of alkynes with mercury (II) and acidic water [and acid] generally gives ketones after keto-enol tautomerism of an enol intermediate. (See post: Keto-Enol Tautomerism)
3. Comparing the “Three-Membered Ring” Pathway For Halogenation of Alkenes And Alkynes
At this point it’s worth summarizing the key similarities and differences between the 3-membered ring pathway for alkynes and alkenes.
In the next post, we’ll compare the “Concerted” pathway for alkynes and alkenes.
Next Post:Â Alkynes – The “Concerted” Pathway
Notes
Related Articles
Note 1. It’s not a problem to isolate the dichlorinated alkene here: the two electron-withdrawing chlorines make it a poorer nucleophile than the starting alkyne. This means that it’s possible to add a different electrophile to the alkene, for instance. So if you wanted to chlorinate then brominate, that would be a feasible option here (still giving the tetrahalide product).
Note 2. Why might the reaction of alkynes be slower than that for alkenes? After all, shouldn’t the alkyne be more “exposed” than the alkene, less sterically hindered? Well, the 3-membered ring intermediate formed from alkynes and halogens has two properties which make it more unstable than the corresponding 3-membered ring intermediate formed from alkenes. First of all, the additional double bond leads to considerably more ring strain; sp2 hybridized carbons [ideal angle 120°] constrained into a triangle [internal angle 60°] is more unstable than an sp3 hybridized carbon [ideal angle 109°] would be.
There’s a second point which doesn’t become apparent for most students until second-semester organic chemistry. The 3-membered ring intermediate formed has antiaromatic character. (See post: Antiaromaticity)
That is, there are 4 π electrons constrained in a conjugated ring, similar to the [never isolated] . Therefore this intermediate should be particularly high-energy and have a higher activation barrier to formation.
Note that there is some disagreement on the mechanism; it has been proposed that this reaction might proceed through ²Ô³Ü³¦±ô±ð´Ç±è³ó¾±±ô¾±³¦Ìýattack on alkyne, at least for the first equivalent of Br2Ìý[according to my March 5th ed. – Sinn, H. et. al., Montash Chem 1965,Ìý96, 1036 ]
Note 3. What about formation of halohydrins with, say, Cl2Â and H2O, like we did with alkenes? Well, that reaction also works, but just as with oxymercuration, it’s complicated: we make a halogenated enol intermediate, which again goes through keto-enol tautomerization and forms a carbonyl. Because tautomerization is usually a 2nd semester topic, and most textbooks figure that it’s not worth going into this reaction in detail at this time , the topic is usually absent from the chapter on alkynes.
For the super curious, here’s a proposal:
Next Post: Alkynes – The “Concerted” Pathway
(Advanced) References and Further Reading
- Untersuchungen über Alloisomerie. II
Arthur Michael
J. Prakt. Chem. 1892, 46 (1), 209-210
DOI:
An early paper on the bromination of alkynes. This paper mentions that bromination of dicarboxyacetylene gave 70% of the trans isomer! - Vergleichende Untersuchung der Bromaddition an symmetrisch substituierte Stilben- und Tolan-Derivate
Sinn, H., Hopperdietzel, S. & Sauermann, D.
Monatshefte für Chemie 1965, 96, 1036�1055
DOI:
There is some disagreement on the mechanism of additions to alkynes, and this paper provides some evidence for nucleophilic attack of Br2. - The Stereochemistry of Electrophilic Additions to Olefins and Acetylenes
Robert C. Fahey
Topics in Stereochemistry 1968, 3, 237-342
DOI:
This review is more weighted towards alkene reactions, but does contain sections on the addition of Cl2 and Br2 to acetylenes. On pg. 291, the author states, “°Ú…] bromine additions to acetylenes °Ú…] in acetic acid follow kinetics similar to those found for olefins, but that acetylenes are 100- to 50,000-fold less reactive than the corresponding olefinsâ€�. - Kinetics and mechanism of electrophilic bromination of acetylenes
James A. Pincock, Keith Yates
Canadian Journal of Chemistry, 1970, 48 (21): 3332-3348
DOI:
Stereoselective anti addition was found in the bromination of 3-hexyne, but both cis and trans products were obtained in the brumation of phenylacetylene. - 188bet½ð±¦²©¹ÙÍøµÇ¼ of sulfenyl halides and their derivatives. 14. Effect of acetylene structure on the rates and products of addition of 4-chlorobenzenesulfenyl chloride
George H. Schmid, Agnieszka Modro, Fred Lenz, Dennis G. Garratt, and Keith Yates
The Journal of Organic Chemistry 1976, 41 (13), 2331-2336
DOI:
Where electrophilic addition involves bridged-ion intermediates, those arising from triple bonds are more strained than those arising from alkenes. This may be a reason why electrophilic additions by such electrophiles as Br, I, SR and so on, is slower for triple than for double bonds. - Electron transmission study of the splitting of the p* molecular orbitals of angle-strained cyclic acetylenes: implications for the electrophilicity of alkynes
Lily Ng, Kenneth D. Jordan, Adolf Krebs, and Wolfgang Rueger
Journal of the American Chemical Society 1982, 104 (26), 7414-7416
DOI:
Another possible explanation for the lower reactivity of alkynes relative to alkenes has to do with the availability of the unfilled orbital in the alkyne. It has been shown that a p* orbital of bent alkynes (e.g. cyclooctyne) has a lower energy than the p* orbital of alkenes, and it has been suggested that linear alkynes can achieve a bent structure in their transition states when reacting with an electrophile.
00 General Chemistry Review
01 Bonding, Structure, and Resonance
- How Do We Know Methane (CH4) Is Tetrahedral?
- Hybrid Orbitals and Hybridization
- How To Determine Hybridization: A Shortcut
- Orbital Hybridization And Bond Strengths
- Sigma bonds come in six varieties: Pi bonds come in one
- A Key Skill: How to Calculate Formal Charge
- The Four Intermolecular Forces and How They Affect Boiling Points
- 3 Trends That Affect Boiling Points
- How To Use Electronegativity To Determine Electron Density (and why NOT to trust formal charge)
- Introduction to Resonance
- How To Use Curved Arrows To Interchange Resonance Forms
- Evaluating Resonance Forms (1) - The Rule of Least Charges
- How To Find The Best Resonance Structure By Applying Electronegativity
- Evaluating Resonance Structures With Negative Charges
- Evaluating Resonance Structures With Positive Charge
- Exploring Resonance: Pi-Donation
- Exploring Resonance: Pi-acceptors
- In Summary: Evaluating Resonance Structures
- Drawing Resonance Structures: 3 Common Mistakes To Avoid
- How to apply electronegativity and resonance to understand reactivity
- Bond Hybridization Practice
- Structure and Bonding Practice Quizzes
- Resonance Structures Practice
02 Acid Base 188bet½ð±¦²©¹ÙÍøµÇ¼
- Introduction to Acid-Base 188bet½ð±¦²©¹ÙÍøµÇ¼
- Acid Base 188bet½ð±¦²©¹ÙÍøµÇ¼ In Organic Chemistry
- The Stronger The Acid, The Weaker The Conjugate Base
- Walkthrough of Acid-Base 188bet½ð±¦²©¹ÙÍøµÇ¼ (3) - Acidity Trends
- Five Key Factors That Influence Acidity
- Acid-Base 188bet½ð±¦²©¹ÙÍøµÇ¼: Introducing Ka and pKa
- How to Use a pKa Table
- The pKa Table Is Your Friend
- A Handy Rule of Thumb for Acid-Base 188bet½ð±¦²©¹ÙÍøµÇ¼
- Acid Base 188bet½ð±¦²©¹ÙÍøµÇ¼ Are Fast
- pKa Values Span 60 Orders Of Magnitude
- How Protonation and Deprotonation Affect Reactivity
- Acid Base Practice Problems
03 Alkanes and Nomenclature
- Meet the (Most Important) Functional Groups
- Condensed Formulas: Deciphering What the Brackets Mean
- Hidden Hydrogens, Hidden Lone Pairs, Hidden Counterions
- Don't Be Futyl, Learn The Butyls
- Primary, Secondary, Tertiary, Quaternary In Organic Chemistry
- Branching, and Its Affect On Melting and Boiling Points
- The Many, Many Ways of Drawing Butane
- Wedge And Dash Convention For Tetrahedral Carbon
- Common Mistakes in Organic Chemistry: Pentavalent Carbon
- Table of Functional Group Priorities for Nomenclature
- Summary Sheet - Alkane Nomenclature
- Organic Chemistry IUPAC Nomenclature Demystified With A Simple Puzzle Piece Approach
- Boiling Point Quizzes
- Organic Chemistry Nomenclature Quizzes
04 Conformations and Cycloalkanes
- Staggered vs Eclipsed Conformations of Ethane
- Conformational Isomers of Propane
- Newman Projection of Butane (and Gauche Conformation)
- Introduction to Cycloalkanes
- Geometric Isomers In Small Rings: Cis And Trans Cycloalkanes
- Calculation of Ring Strain In Cycloalkanes
- Cycloalkanes - Ring Strain In Cyclopropane And Cyclobutane
- Cyclohexane Conformations
- Cyclohexane Chair Conformation: An Aerial Tour
- How To Draw The Cyclohexane Chair Conformation
- The Cyclohexane Chair Flip
- The Cyclohexane Chair Flip - Energy Diagram
- Substituted Cyclohexanes - Axial vs Equatorial
- Ranking The Bulkiness Of Substituents On Cyclohexanes: "A-Values"
- Cyclohexane Chair Conformation Stability: Which One Is Lower Energy?
- Fused Rings - Cis-Decalin and Trans-Decalin
- Naming Bicyclic Compounds - Fused, Bridged, and Spiro
- Bredt's Rule (And Summary of Cycloalkanes)
- Newman Projection Practice
- Cycloalkanes Practice Problems
05 A Primer On Organic 188bet½ð±¦²©¹ÙÍøµÇ¼
- The Most Important Question To Ask When Learning a New Reaction
- Curved Arrows (for reactions)
- Nucleophiles and Electrophiles
- The Three Classes of Nucleophiles
- Nucleophilicity vs. Basicity
- What Makes A Good Nucleophile?
- What Makes A Good Leaving Group?
- 3 Factors That Stabilize Carbocations
- Equilibrium and Energy Relationships
- 7 Factors that stabilize negative charge in organic chemistry
- 7 Factors That Stabilize Positive Charge in Organic Chemistry
- What's a Transition State?
- Hammond's Postulate
- Learning Organic Chemistry 188bet½ð±¦²©¹ÙÍøµÇ¼: A Checklist (PDF)
- Introduction to Oxidative Cleavage 188bet½ð±¦²©¹ÙÍøµÇ¼
06 Free Radical 188bet½ð±¦²©¹ÙÍøµÇ¼
- Bond Dissociation Energies = Homolytic Cleavage
- Free Radical 188bet½ð±¦²©¹ÙÍøµÇ¼
- 3 Factors That Stabilize Free Radicals
- What Factors Destabilize Free Radicals?
- Bond Strengths And Radical Stability
- Free Radical Initiation: Why Is "Light" Or "Heat" Required?
- Initiation, Propagation, Termination
- Monochlorination Products Of Propane, Pentane, And Other Alkanes
- Selectivity In Free Radical 188bet½ð±¦²©¹ÙÍøµÇ¼
- Selectivity in Free Radical 188bet½ð±¦²©¹ÙÍøµÇ¼: Bromination vs. Chlorination
- Halogenation At Tiffany's
- Allylic Bromination
- Bonus Topic: Allylic Rearrangements
- In Summary: Free Radicals
- Synthesis (2) - 188bet½ð±¦²©¹ÙÍøµÇ¼ of Alkanes
- Free Radicals Practice Quizzes
07 Stereochemistry and Chirality
- Types of Isomers: Constitutional Isomers, Stereoisomers, Enantiomers, and Diastereomers
- How To Draw The Enantiomer Of A Chiral Molecule
- How To Draw A Bond Rotation
- Introduction to Assigning (R) and (S): The Cahn-Ingold-Prelog Rules
- Assigning Cahn-Ingold-Prelog (CIP) Priorities (2) - The Method of Dots
- Enantiomers vs Diastereomers vs The Same? Two Methods For Solving Problems
- Assigning R/S To Newman Projections (And Converting Newman To Line Diagrams)
- How To Determine R and S Configurations On A Fischer Projection
- The Meso Trap
- Optical Rotation, Optical Activity, and Specific Rotation
- Optical Purity and Enantiomeric Excess
- What's a Racemic Mixture?
- Chiral Allenes And Chiral Axes
- Stereochemistry Practice Problems and Quizzes
08 Substitution 188bet½ð±¦²©¹ÙÍøµÇ¼
- Nucleophilic Substitution 188bet½ð±¦²©¹ÙÍøµÇ¼ - Introduction
- Two Types of Nucleophilic Substitution 188bet½ð±¦²©¹ÙÍøµÇ¼
- The SN2 Mechanism
- Why the SN2 Reaction Is Powerful
- The SN1 Mechanism
- The Conjugate Acid Is A Better Leaving Group
- Comparing the SN1 and SN2 188bet½ð±¦²©¹ÙÍøµÇ¼
- Polar Protic? Polar Aprotic? Nonpolar? All About Solvents
- Steric Hindrance is Like a Fat Goalie
- Common Blind Spot: Intramolecular 188bet½ð±¦²©¹ÙÍøµÇ¼
- Substitution Practice - SN1
- Substitution Practice - SN2
09 Elimination 188bet½ð±¦²©¹ÙÍøµÇ¼
- Elimination 188bet½ð±¦²©¹ÙÍøµÇ¼ (1): Introduction And The Key Pattern
- Elimination 188bet½ð±¦²©¹ÙÍøµÇ¼ (2): The Zaitsev Rule
- Elimination 188bet½ð±¦²©¹ÙÍøµÇ¼ Are Favored By Heat
- Two Elimination Reaction Patterns
- The E1 Reaction
- The E2 Mechanism
- E1 vs E2: Comparing the E1 and E2 188bet½ð±¦²©¹ÙÍøµÇ¼
- Antiperiplanar Relationships: The E2 Reaction and Cyclohexane Rings
- Bulky Bases in Elimination 188bet½ð±¦²©¹ÙÍøµÇ¼
- Comparing the E1 vs SN1 188bet½ð±¦²©¹ÙÍøµÇ¼
- Elimination (E1) 188bet½ð±¦²©¹ÙÍøµÇ¼ With Rearrangements
- E1cB - Elimination (Unimolecular) Conjugate Base
- Elimination (E1) Practice Problems And Solutions
- Elimination (E2) Practice Problems and Solutions
10 Rearrangements
11 SN1/SN2/E1/E2 Decision
- Identifying Where Substitution and Elimination 188bet½ð±¦²©¹ÙÍøµÇ¼ Happen
- Deciding SN1/SN2/E1/E2 (1) - The Substrate
- Deciding SN1/SN2/E1/E2 (2) - The Nucleophile/Base
- SN1 vs E1 and SN2 vs E2 : The Temperature
- Deciding SN1/SN2/E1/E2 - The Solvent
- Wrapup: The Key Factors For Determining SN1/SN2/E1/E2
- Alkyl Halide Reaction Map And Summary
- SN1 SN2 E1 E2 Practice Problems
12 Alkene 188bet½ð±¦²©¹ÙÍøµÇ¼
- E and Z Notation For Alkenes (+ Cis/Trans)
- Alkene Stability
- Alkene Addition 188bet½ð±¦²©¹ÙÍøµÇ¼: "Regioselectivity" and "Stereoselectivity" (Syn/Anti)
- Stereoselective and Stereospecific 188bet½ð±¦²©¹ÙÍøµÇ¼
- Hydrohalogenation of Alkenes and Markovnikov's Rule
- Hydration of Alkenes With Aqueous Acid
- Rearrangements in Alkene Addition 188bet½ð±¦²©¹ÙÍøµÇ¼
- Halogenation of Alkenes and Halohydrin Formation
- Oxymercuration Demercuration of Alkenes
- Hydroboration Oxidation of Alkenes
- m-CPBA (meta-chloroperoxybenzoic acid)
- OsO4 (Osmium Tetroxide) for Dihydroxylation of Alkenes
- Palladium on Carbon (Pd/C) for Catalytic Hydrogenation of Alkenes
- Cyclopropanation of Alkenes
- A Fourth Alkene Addition Pattern - Free Radical Addition
- Alkene 188bet½ð±¦²©¹ÙÍøµÇ¼: Ozonolysis
- Summary: Three Key Families Of Alkene Reaction Mechanisms
- Synthesis (4) - Alkene Reaction Map, Including Alkyl Halide 188bet½ð±¦²©¹ÙÍøµÇ¼
- Alkene 188bet½ð±¦²©¹ÙÍøµÇ¼ Practice Problems
13 Alkyne 188bet½ð±¦²©¹ÙÍøµÇ¼
- Acetylides from Alkynes, And Substitution 188bet½ð±¦²©¹ÙÍøµÇ¼ of Acetylides
- Partial Reduction of Alkynes With Lindlar's Catalyst
- Partial Reduction of Alkynes With Na/NH3 To Obtain Trans Alkenes
- Alkyne Hydroboration With "R2BH"
- Hydration and Oxymercuration of Alkynes
- Hydrohalogenation of Alkynes
- Alkyne Halogenation: Bromination, Chlorination, and Iodination of Alkynes
- Alkyne 188bet½ð±¦²©¹ÙÍøµÇ¼ - The "Concerted" Pathway
- Alkenes To Alkynes Via Halogenation And Elimination 188bet½ð±¦²©¹ÙÍøµÇ¼
- Alkynes Are A Blank Canvas
- Synthesis (5) - 188bet½ð±¦²©¹ÙÍøµÇ¼ of Alkynes
- Alkyne 188bet½ð±¦²©¹ÙÍøµÇ¼ Practice Problems With Answers
14 Alcohols, Epoxides and Ethers
- Alcohols - Nomenclature and Properties
- Alcohols Can Act As Acids Or Bases (And Why It Matters)
- Alcohols - Acidity and Basicity
- The Williamson Ether Synthesis
- Ethers From Alkenes, Tertiary Alkyl Halides and Alkoxymercuration
- Alcohols To Ethers via Acid Catalysis
- Cleavage Of Ethers With Acid
- Epoxides - The Outlier Of The Ether Family
- Opening of Epoxides With Acid
- Epoxide Ring Opening With Base
- Making Alkyl Halides From Alcohols
- Tosylates And Mesylates
- PBr3 and SOCl2
- Elimination 188bet½ð±¦²©¹ÙÍøµÇ¼ of Alcohols
- Elimination of Alcohols To Alkenes With POCl3
- Alcohol Oxidation: "Strong" and "Weak" Oxidants
- Demystifying The Mechanisms of Alcohol Oxidations
- Protecting Groups For Alcohols
- Thiols And Thioethers
- Calculating the oxidation state of a carbon
- Oxidation and Reduction in Organic Chemistry
- Oxidation Ladders
- SOCl2 Mechanism For Alcohols To Alkyl Halides: SN2 versus SNi
- Alcohol 188bet½ð±¦²©¹ÙÍøµÇ¼ Roadmap (PDF)
- Alcohol Reaction Practice Problems
- Epoxide Reaction Quizzes
- Oxidation and Reduction Practice Quizzes
15 Organometallics
- What's An Organometallic?
- Formation of Grignard and Organolithium Reagents
- Organometallics Are Strong Bases
- 188bet½ð±¦²©¹ÙÍøµÇ¼ of Grignard Reagents
- Protecting Groups In Grignard 188bet½ð±¦²©¹ÙÍøµÇ¼
- Synthesis Problems Involving Grignard Reagents
- Grignard 188bet½ð±¦²©¹ÙÍøµÇ¼ And Synthesis (2)
- Organocuprates (Gilman Reagents): How They're Made
- Gilman Reagents (Organocuprates): What They're Used For
- The Heck, Suzuki, and Olefin Metathesis 188bet½ð±¦²©¹ÙÍøµÇ¼ (And Why They Don't Belong In Most Introductory Organic Chemistry Courses)
- Reaction Map: 188bet½ð±¦²©¹ÙÍøµÇ¼ of Organometallics
- Grignard Practice Problems
16 Spectroscopy
- Degrees of Unsaturation (or IHD, Index of Hydrogen Deficiency)
- Conjugation And Color (+ How Bleach Works)
- Introduction To UV-Vis Spectroscopy
- UV-Vis Spectroscopy: Absorbance of Carbonyls
- UV-Vis Spectroscopy: Practice Questions
- Bond Vibrations, Infrared Spectroscopy, and the "Ball and Spring" Model
- Infrared Spectroscopy: A Quick Primer On Interpreting Spectra
- IR Spectroscopy: 4 Practice Problems
- 1H NMR: How Many Signals?
- Homotopic, Enantiotopic, Diastereotopic
- Diastereotopic Protons in 1H NMR Spectroscopy: Examples
- 13-C NMR - How Many Signals
- Liquid Gold: Pheromones In Doe Urine
- Natural Product Isolation (1) - Extraction
- Natural Product Isolation (2) - Purification Techniques, An Overview
- Structure Determination Case Study: Deer Tarsal Gland Pheromone
17 Dienes and MO Theory
- What To Expect In Organic Chemistry 2
- Are these molecules conjugated?
- Conjugation And Resonance In Organic Chemistry
- Bonding And Antibonding Pi Orbitals
- Molecular Orbitals of The Allyl Cation, Allyl Radical, and Allyl Anion
- Pi Molecular Orbitals of Butadiene
- 188bet½ð±¦²©¹ÙÍøµÇ¼ of Dienes: 1,2 and 1,4 Addition
- Thermodynamic and Kinetic Products
- More On 1,2 and 1,4 Additions To Dienes
- s-cis and s-trans
- The Diels-Alder Reaction
- Cyclic Dienes and Dienophiles in the Diels-Alder Reaction
- Stereochemistry of the Diels-Alder Reaction
- Exo vs Endo Products In The Diels Alder: How To Tell Them Apart
- HOMO and LUMO In the Diels Alder Reaction
- Why Are Endo vs Exo Products Favored in the Diels-Alder Reaction?
- Diels-Alder Reaction: Kinetic and Thermodynamic Control
- The Retro Diels-Alder Reaction
- The Intramolecular Diels Alder Reaction
- Regiochemistry In The Diels-Alder Reaction
- The Cope and Claisen Rearrangements
- Electrocyclic 188bet½ð±¦²©¹ÙÍøµÇ¼
- Electrocyclic Ring Opening And Closure (2) - Six (or Eight) Pi Electrons
- Diels Alder Practice Problems
- Molecular Orbital Theory Practice
18 Aromaticity
- Introduction To Aromaticity
- Rules For Aromaticity
- Huckel's Rule: What Does 4n+2 Mean?
- Aromatic, Non-Aromatic, or Antiaromatic? Some Practice Problems
- Antiaromatic Compounds and Antiaromaticity
- The Pi Molecular Orbitals of Benzene
- The Pi Molecular Orbitals of Cyclobutadiene
- Frost Circles
- Aromaticity Practice Quizzes
19 188bet½ð±¦²©¹ÙÍøµÇ¼ of Aromatic Molecules
- Electrophilic Aromatic Substitution: Introduction
- Activating and Deactivating Groups In Electrophilic Aromatic Substitution
- Electrophilic Aromatic Substitution - The Mechanism
- Ortho-, Para- and Meta- Directors in Electrophilic Aromatic Substitution
- Understanding Ortho, Para, and Meta Directors
- Why are halogens ortho- para- directors?
- Disubstituted Benzenes: The Strongest Electron-Donor "Wins"
- Electrophilic Aromatic Substitutions (1) - Halogenation of Benzene
- Electrophilic Aromatic Substitutions (2) - Nitration and Sulfonation
- EAS 188bet½ð±¦²©¹ÙÍøµÇ¼ (3) - Friedel-Crafts Acylation and Friedel-Crafts Alkylation
- Intramolecular Friedel-Crafts 188bet½ð±¦²©¹ÙÍøµÇ¼
- Nucleophilic Aromatic Substitution (NAS)
- Nucleophilic Aromatic Substitution (2) - The Benzyne Mechanism
- 188bet½ð±¦²©¹ÙÍøµÇ¼ on the "Benzylic" Carbon: Bromination And Oxidation
- The Wolff-Kishner, Clemmensen, And Other Carbonyl Reductions
- More 188bet½ð±¦²©¹ÙÍøµÇ¼ on the Aromatic Sidechain: Reduction of Nitro Groups and the Baeyer Villiger
- Aromatic Synthesis (1) - "Order Of Operations"
- Synthesis of Benzene Derivatives (2) - Polarity Reversal
- Aromatic Synthesis (3) - Sulfonyl Blocking Groups
- Birch Reduction
- Synthesis (7): Reaction Map of Benzene and Related Aromatic Compounds
- Aromatic 188bet½ð±¦²©¹ÙÍøµÇ¼ and Synthesis Practice
- Electrophilic Aromatic Substitution Practice Problems
20 Aldehydes and Ketones
- What's The Alpha Carbon In Carbonyl Compounds?
- Nucleophilic Addition To Carbonyls
- Aldehydes and Ketones: 14 188bet½ð±¦²©¹ÙÍøµÇ¼ With The Same Mechanism
- Sodium Borohydride (NaBH4) Reduction of Aldehydes and Ketones
- Grignard Reagents For Addition To Aldehydes and Ketones
- Wittig Reaction
- Hydrates, Hemiacetals, and Acetals
- Imines - Properties, Formation, 188bet½ð±¦²©¹ÙÍøµÇ¼, and Mechanisms
- All About Enamines
- Breaking Down Carbonyl Reaction Mechanisms: 188bet½ð±¦²©¹ÙÍøµÇ¼ of Anionic Nucleophiles (Part 2)
- Aldehydes Ketones Reaction Practice
21 Carboxylic Acid Derivatives
- Nucleophilic Acyl Substitution (With Negatively Charged Nucleophiles)
- Addition-Elimination Mechanisms With Neutral Nucleophiles (Including Acid Catalysis)
- Basic Hydrolysis of Esters - Saponification
- Transesterification
- Proton Transfer
- Fischer Esterification - Carboxylic Acid to Ester Under Acidic Conditions
- Lithium Aluminum Hydride (LiAlH4) For Reduction of Carboxylic Acid Derivatives
- LiAlH[Ot-Bu]3 For The Reduction of Acid Halides To Aldehydes
- Di-isobutyl Aluminum Hydride (DIBAL) For The Partial Reduction of Esters and Nitriles
- Amide Hydrolysis
- Thionyl Chloride (SOCl2) And Conversion of Carboxylic Acids to Acid Halides
- Diazomethane (CH2N2)
- Carbonyl Chemistry: Learn Six Mechanisms For the Price Of One
- Making Music With Mechanisms (PADPED)
- Carboxylic Acid Derivatives Practice Questions
22 Enols and Enolates
- Keto-Enol Tautomerism
- Enolates - Formation, Stability, and Simple 188bet½ð±¦²©¹ÙÍøµÇ¼
- Kinetic Versus Thermodynamic Enolates
- Aldol Addition and Condensation 188bet½ð±¦²©¹ÙÍøµÇ¼
- 188bet½ð±¦²©¹ÙÍøµÇ¼ of Enols - Acid-Catalyzed Aldol, Halogenation, and Mannich 188bet½ð±¦²©¹ÙÍøµÇ¼
- Claisen Condensation and Dieckmann Condensation
- Decarboxylation
- The Malonic Ester and Acetoacetic Ester Synthesis
- The Michael Addition Reaction and Conjugate Addition
- The Robinson Annulation
- Haloform Reaction
- The Hell–Volhard–Zelinsky Reaction
- Enols and Enolates Practice Quizzes
23 Amines
- The Amide Functional Group: Properties, Synthesis, and Nomenclature
- Basicity of Amines And pKaH
- 5 Key Basicity Trends of Amines
- The Mesomeric Effect And Aromatic Amines
- Nucleophilicity of Amines
- Alkylation of Amines (Sucks!)
- Reductive Amination
- The Gabriel Synthesis
- Some 188bet½ð±¦²©¹ÙÍøµÇ¼ of Azides
- The Hofmann Elimination
- The Hofmann and Curtius Rearrangements
- The Cope Elimination
- Protecting Groups for Amines - Carbamates
- The Strecker Synthesis of Amino Acids
- Introduction to Peptide Synthesis
- 188bet½ð±¦²©¹ÙÍøµÇ¼ of Diazonium Salts: Sandmeyer and Related 188bet½ð±¦²©¹ÙÍøµÇ¼
- Amine Practice Questions
24 Carbohydrates
- D and L Notation For Sugars
- Pyranoses and Furanoses: Ring-Chain Tautomerism In Sugars
- What is Mutarotation?
- Reducing Sugars
- The Big Damn Post Of Carbohydrate-Related Chemistry Definitions
- The Haworth Projection
- Converting a Fischer Projection To A Haworth (And Vice Versa)
- 188bet½ð±¦²©¹ÙÍøµÇ¼ of Sugars: Glycosylation and Protection
- The Ruff Degradation and Kiliani-Fischer Synthesis
- Isoelectric Points of Amino Acids (and How To Calculate Them)
- Carbohydrates Practice
- Amino Acid Quizzes
25 Fun and Miscellaneous
- A Gallery of Some Interesting Molecules From Nature
- Screw Organic Chemistry, I'm Just Going To Write About Cats
- On Cats, Part 1: Conformations and Configurations
- On Cats, Part 2: Cat Line Diagrams
- On Cats, Part 4: Enantiocats
- On Cats, Part 6: Stereocenters
- Organic Chemistry Is Shit
- The Organic Chemistry Behind "The Pill"
- Maybe they should call them, "Formal Wins" ?
- Why Do Organic Chemists Use Kilocalories?
- The Principle of Least Effort
- Organic Chemistry GIFS - Resonance Forms
- Reproducibility In Organic Chemistry
- What Holds The Nucleus Together?
- How 188bet½ð±¦²©¹ÙÍøµÇ¼ Are Like Music
- Organic Chemistry and the New MCAT
26 Organic Chemistry Tips and Tricks
- Common Mistakes: Formal Charges Can Mislead
- Partial Charges Give Clues About Electron Flow
- Draw The Ugly Version First
- Organic Chemistry Study Tips: Learn the Trends
- The 8 Types of Arrows In Organic Chemistry, Explained
- Top 10 Skills To Master Before An Organic Chemistry 2 Final
- Common Mistakes with Carbonyls: Carboxylic Acids... Are Acids!
- Planning Organic Synthesis With "Reaction Maps"
- Alkene Addition Pattern #1: The "Carbocation Pathway"
- Alkene Addition Pattern #2: The "Three-Membered Ring" Pathway
- Alkene Addition Pattern #3: The "Concerted" Pathway
- Number Your Carbons!
- The 4 Major Classes of 188bet½ð±¦²©¹ÙÍøµÇ¼ in Org 1
- How (and why) electrons flow
- Grossman's Rule
- Three Exam Tips
- A 3-Step Method For Thinking Through Synthesis Problems
- Putting It Together
- Putting Diels-Alder Products in Perspective
- The Ups and Downs of Cyclohexanes
- The Most Annoying Exceptions in Org 1 (Part 1)
- The Most Annoying Exceptions in Org 1 (Part 2)
- The Marriage May Be Bad, But the Divorce Still Costs Money
- 9 Nomenclature Conventions To Know
- Nucleophile attacks Electrophile
27 Case Studies of Successful O-Chem Students
- Success Stories: How Corina Got The The "Hard" Professor - And Got An A+ Anyway
- How Helena Aced Organic Chemistry
- From a "Drop" To B+ in Org 2 � How A Hard Working Student Turned It Around
- How Serge Aced Organic Chemistry
- Success Stories: How Zach Aced Organic Chemistry 1
- Success Stories: How Kari Went From C� to B+
- How Esther Bounced Back From a "C" To Get A's In Organic Chemistry 1 And 2
- How Tyrell Got The Highest Grade In Her Organic Chemistry Course
- This Is Why Students Use Flashcards
- Success Stories: How Stu Aced Organic Chemistry
- How John Pulled Up His Organic Chemistry Exam Grades
- Success Stories: How Nathan Aced Organic Chemistry (Without It Taking Over His Life)
- How Chris Aced Org 1 and Org 2
- Interview: How Jay Got an A+ In Organic Chemistry
- How to Do Well in Organic Chemistry: One Student's Advice
- "America's Top TA" Shares His Secrets For Teaching O-Chem
- "Organic Chemistry Is Like..." - A Few Metaphors
- How To Do Well In Organic Chemistry: Advice From A Tutor
- Guest post: "I went from being afraid of tests to actually looking forward to them".
Thank you
I have seen somewhere that you even get a cis product,through what other mechanism can you get a it
Wrong halohydrin rxn with alkyne
two halo atoms get attached
“The 3-membered ring intermediate formed has antiaromatic character. That is, there are 4 Ï€ electrons constrained in a conjugated ring,” does this mean that one of the two lone pairs of Cl is part of the antiaromatic system?
Yes, exactly!