Home / Conjugation And Color (+ How Bleach Works)
Spectroscopy
Conjugation And Color (+ How Bleach Works)
Last updated: October 31st, 2022 |
Conjugation And Color
Why are tomatoes red? Why are carrots orange? Why are egg yolks yellow? Ìý And… why isÌýVulcanÌýblood green?
OK, I’m not going toÌýtouch that last one, but as for the first three: great question.
Table of Contents
- These Highly Colored Molecules Have Highly Conjugated Pi Bonds
- Removing Pi Bonds Changes The Color (Or Removes It Entirely)
- How Bleach Works:Ìý By Destroying PiÌý Bonds
- So How Exactly Is Conjugation Related To Color?
There are actually , but todayÌýwe’ll begin to explore theÌýreason for the characteristic colors of tomatoes, egg yolks, carrots, and many other pigments from nature, such as the green color of leaves and the red color of blood (heme). And yes, there is a spectroscopy angle here – but that’s going to wait until the next post.
Before getting into theÌý“why”, I always like to look at the “what”. Specifically, here are some examples of highly coloured molecules from everyday life.ÌýDo you notice something thatÌýall of these molecules have in common?
Yes, they have lots of double bonds. ÌýBut having lots of double bonds is not sufficient for a molecule to be strongly colored.
For instance, natural rubber latex can have hundreds or thousands of pi bonds, and yet it is milky white [Note 1]:
1. These Highly Colored Molecules Have Many ConjugatedÌýPiÌýBonds
There’s somethingÌýspecial about the way the pi bonds are arranged in lycopene, lutein, and b-carotene, as opposed to natural rubber latex: the pi bonds areÌýconjugated.Ìý
What does that mean? [See: Are these alkenes conjugated?].
Quickie review on “conjugated” versus “non-conjugated” alkenes:
- In 1,3-hexadiene (above) note that there are two adjacent double bonds. That means that there are four consecutive sp2 hybridized carbons whose p-orbitals can line up to form an extended “pi system”. [We’ll explain why this is important in the next post]
- In 1,4 hexadiene, note that there is an sp3 hybridized CH2 (“methylene”) carbon separating the two double bonds. The CH2 does not have an available p orbital toÌýoverlapÌýwith either of the adjacent pi bonds, and thus these two pi bonds are said to be “isolated” (or non-conjugated if you prefer).
Let’sÌýrevisitÌýlycopene, lutein, and β-carotene. They each have long systems of conjugated pi bonds.
- Lycopene and β-carotene each have 11 conjugated pi bonds (lycopene also has 2 isolated pi bonds)
- Lutein has 10 conjugated pi bonds (with an isolated pi bond).
This is also true of chlorophyll and heme, which are more complex examples but the same principles apply.
2. Removing Double Bonds Affects The Color
Let’s start with a hypothesis: color is due to the presence of an extended series of conjugated double bonds.
How could we test this idea?
One way would be to perform an experiment that removed the Ï€ÌýbondsÌýwhile leaving the rest of the molecule intact.
We’ve seen multiple examples of these reactions in our section on alkenes. A great candidate isÌýcatalytic hydrogenation, which breaks C-C Ï€Ìýbonds and forms adjacent C-H bonds by using hydrogen gas (H2) in the presence of a metal catalyst (such as palladium on carbon, Pd/C).
Indeed, when one subjects red lycopene (C40H56) to exhaustive catalytic hydrogenation, one obtains perhhydrolycopene (aka “lycopane”) with formula C40H82 –ÌýaÌýcolourless oil.Ìý
Bottom line: removing the conjugated Ï€Ìýsystem removes the source of color!
3. Bleach Works By Destroying Pi Bonds
Does this seem too abstract? Do we need aÌýreal life application?
Look no further:
Damn that lycopene! How can we get those nasty stains out of our clothes using our new-found chemistry knowledge?
Here’s an idea I’m giving away for free:
Since you now know that lycopene is responsible for the red color of ketchup, and catalytic hydrogenation removes the color, you could make a home device for catalytic hydrogenation of shirts at high pressure and get rid of the stain. Since every household could use one, and there are about 100 million households in the USA, you could sell each unit Ìýfor several hundred dollars apiece, and before you know it, you’ll be buying a top hat and a monocle.
#billiondollarideas
Or… you could just use this.
That’s right:ÌýBleach removes the color of grass, ketchup, blood, carrots, and a lot of other common food and vegetable stainsÌýbyÌýreacting with the Ï€Ìýbonds responsible for the color of these molecules.Ìý
Bleach (sodium hypochlorite, NaOCl) reacts with alkenes in a similar way to a reagent we’ve seen before, Cl2 in H2O. When you examine the structure of NaOCl, notice that Cl is attached to the more electronegative atom O. That means that chlorine bears a partial positive charge – it’sÌýelectrophilic.ÌýThus, NaOCl will react with nucleophiles like alkenes in a similar way to Cl2 or Br2, forming a bridging intermediate through theÌýthree membered ring pathway.ÌýÌýThe 3-membered ring bridge is then attacked at the most substituted carbon by the nucleophilic solvent (water in this case).
Let’s apply this specifically to lycopene (and by extension other molecules).
Bleach works by knocking out the pi bonds responsible for the red color of lycopene:
I should point out that it isn’t necessary for bleach to hitÌýevery pi bond. Knocking out just a few in that sequence of 11 conjugated pi bonds is enough to remove the red color.
So there you go, folks. Now you know that bleach doesn’t actuallyÌýcleanÌýanything. It just modifies the molecules so that they aren’t coloured anymore. : – )
4. Conjugation And Color: How Exactly Are They Related?
So far, we’ve explained nothing truly fundamental about the source of color. All we’ve done is show a bunch of pretty pictures, a bad GIF, and explained the workings of a household chemical. So let’s get down to business and start answering the “Why”.
Let’s start with a few obvious things:
- Substances that do not absorb visible light, such as water, Ìýwill appear colourless;Ìýor, if finely dispersed, white due to scatteringÌýof light (e.g. clouds).
- Substances that absorb at all frequencies of visible light will appear black.
- Next, and pardon me if this is obvious to you, Ìýthe pigment molecules we’ve been talking about don’t emit light. Ìý[Luciferin from fireflies does, under certain conditions, but that’s and we’re not talking about that here].
- What we perceive as color is the light that isÌýreflected from these pigment molecules.
We see ripe tomatoes as red because white light is reflected back to our eyes as red light.ÌýSo some portion of the visible spectrum is being absorbed by lycopene: we see the light it doesn’t absorb.
So if we see something asÌýred, how can we figure out what wavelengths of light are being absorbed?
For simple cases, it’s been known for hundreds of years that when light of a certain color is absorbed, theÌýcomplimentary color is observed. AÌýcommon tool for determining this is a color wheel, which places complimentary colors on opposite sides.ÌýÌýHere’s one made by the German poet (and amateur scientist) Johann Wolfgang von Goethe.
- From the color wheel we determine that the complimentary colour of red is green. ÌýSo a good first guess is that lycopene in tomatoes is absorbing somewhere in the green part of the visible spectrum.
- Similarly, pigments that appear yellowÌýtend to absorb in theÌýindigoÌýarea of the visible spectrum.
- Pigments that appearÌýorange tend to absorb in theÌýblueÌýarea of the visible spectrum…. you get the idea.
So what do all those conjugated pi bonds have to do with lycopene absorbing green light?
ExcellentÌýquestion. Now we’re getting into some deep stuff. This is a great topic! ÌýBut it will have to wait until the next post for a full treatment.
Next post: UV-Visible Spectroscopy
Notes
Related Articles
Note 1.ÌýCommenter John points out:
The latex rubber example is a little bit of apples and oranges. The white color is common for any latex/emulsion and it arise from the physical structure of the dispersion � the emulsion particles scatter all light. A better comparison would be a dried latex, but they are typically light yellow due to impurities.
00 General Chemistry Review
01 Bonding, Structure, and Resonance
- How Do We Know Methane (CH4) Is Tetrahedral?
- Hybrid Orbitals and Hybridization
- How To Determine Hybridization: A Shortcut
- Orbital Hybridization And Bond Strengths
- Sigma bonds come in six varieties: Pi bonds come in one
- A Key Skill: How to Calculate Formal Charge
- The Four Intermolecular Forces and How They Affect Boiling Points
- 3 Trends That Affect Boiling Points
- How To Use Electronegativity To Determine Electron Density (and why NOT to trust formal charge)
- Introduction to Resonance
- How To Use Curved Arrows To Interchange Resonance Forms
- Evaluating Resonance Forms (1) - The Rule of Least Charges
- How To Find The Best Resonance Structure By Applying Electronegativity
- Evaluating Resonance Structures With Negative Charges
- Evaluating Resonance Structures With Positive Charge
- Exploring Resonance: Pi-Donation
- Exploring Resonance: Pi-acceptors
- In Summary: Evaluating Resonance Structures
- Drawing Resonance Structures: 3 Common Mistakes To Avoid
- How to apply electronegativity and resonance to understand reactivity
- Bond Hybridization Practice
- Structure and Bonding Practice Quizzes
- Resonance Structures Practice
02 Acid Base 188bet½ð±¦²©¹ÙÍøµÇ¼
- Introduction to Acid-Base 188bet½ð±¦²©¹ÙÍøµÇ¼
- Acid Base 188bet½ð±¦²©¹ÙÍøµÇ¼ In Organic Chemistry
- The Stronger The Acid, The Weaker The Conjugate Base
- Walkthrough of Acid-Base 188bet½ð±¦²©¹ÙÍøµÇ¼ (3) - Acidity Trends
- Five Key Factors That Influence Acidity
- Acid-Base 188bet½ð±¦²©¹ÙÍøµÇ¼: Introducing Ka and pKa
- How to Use a pKa Table
- The pKa Table Is Your Friend
- A Handy Rule of Thumb for Acid-Base 188bet½ð±¦²©¹ÙÍøµÇ¼
- Acid Base 188bet½ð±¦²©¹ÙÍøµÇ¼ Are Fast
- pKa Values Span 60 Orders Of Magnitude
- How Protonation and Deprotonation Affect Reactivity
- Acid Base Practice Problems
03 Alkanes and Nomenclature
- Meet the (Most Important) Functional Groups
- Condensed Formulas: Deciphering What the Brackets Mean
- Hidden Hydrogens, Hidden Lone Pairs, Hidden Counterions
- Don't Be Futyl, Learn The Butyls
- Primary, Secondary, Tertiary, Quaternary In Organic Chemistry
- Branching, and Its Affect On Melting and Boiling Points
- The Many, Many Ways of Drawing Butane
- Wedge And Dash Convention For Tetrahedral Carbon
- Common Mistakes in Organic Chemistry: Pentavalent Carbon
- Table of Functional Group Priorities for Nomenclature
- Summary Sheet - Alkane Nomenclature
- Organic Chemistry IUPAC Nomenclature Demystified With A Simple Puzzle Piece Approach
- Boiling Point Quizzes
- Organic Chemistry Nomenclature Quizzes
04 Conformations and Cycloalkanes
- Staggered vs Eclipsed Conformations of Ethane
- Conformational Isomers of Propane
- Newman Projection of Butane (and Gauche Conformation)
- Introduction to Cycloalkanes
- Geometric Isomers In Small Rings: Cis And Trans Cycloalkanes
- Calculation of Ring Strain In Cycloalkanes
- Cycloalkanes - Ring Strain In Cyclopropane And Cyclobutane
- Cyclohexane Conformations
- Cyclohexane Chair Conformation: An Aerial Tour
- How To Draw The Cyclohexane Chair Conformation
- The Cyclohexane Chair Flip
- The Cyclohexane Chair Flip - Energy Diagram
- Substituted Cyclohexanes - Axial vs Equatorial
- Ranking The Bulkiness Of Substituents On Cyclohexanes: "A-Values"
- Cyclohexane Chair Conformation Stability: Which One Is Lower Energy?
- Fused Rings - Cis-Decalin and Trans-Decalin
- Naming Bicyclic Compounds - Fused, Bridged, and Spiro
- Bredt's Rule (And Summary of Cycloalkanes)
- Newman Projection Practice
- Cycloalkanes Practice Problems
05 A Primer On Organic 188bet½ð±¦²©¹ÙÍøµÇ¼
- The Most Important Question To Ask When Learning a New Reaction
- Curved Arrows (for reactions)
- Nucleophiles and Electrophiles
- The Three Classes of Nucleophiles
- Nucleophilicity vs. Basicity
- What Makes A Good Nucleophile?
- What Makes A Good Leaving Group?
- 3 Factors That Stabilize Carbocations
- Equilibrium and Energy Relationships
- 7 Factors that stabilize negative charge in organic chemistry
- 7 Factors That Stabilize Positive Charge in Organic Chemistry
- What's a Transition State?
- Hammond's Postulate
- Learning Organic Chemistry 188bet½ð±¦²©¹ÙÍøµÇ¼: A Checklist (PDF)
- Introduction to Oxidative Cleavage 188bet½ð±¦²©¹ÙÍøµÇ¼
06 Free Radical 188bet½ð±¦²©¹ÙÍøµÇ¼
- Bond Dissociation Energies = Homolytic Cleavage
- Free Radical 188bet½ð±¦²©¹ÙÍøµÇ¼
- 3 Factors That Stabilize Free Radicals
- What Factors Destabilize Free Radicals?
- Bond Strengths And Radical Stability
- Free Radical Initiation: Why Is "Light" Or "Heat" Required?
- Initiation, Propagation, Termination
- Monochlorination Products Of Propane, Pentane, And Other Alkanes
- Selectivity In Free Radical 188bet½ð±¦²©¹ÙÍøµÇ¼
- Selectivity in Free Radical 188bet½ð±¦²©¹ÙÍøµÇ¼: Bromination vs. Chlorination
- Halogenation At Tiffany's
- Allylic Bromination
- Bonus Topic: Allylic Rearrangements
- In Summary: Free Radicals
- Synthesis (2) - 188bet½ð±¦²©¹ÙÍøµÇ¼ of Alkanes
- Free Radicals Practice Quizzes
07 Stereochemistry and Chirality
- Types of Isomers: Constitutional Isomers, Stereoisomers, Enantiomers, and Diastereomers
- How To Draw The Enantiomer Of A Chiral Molecule
- How To Draw A Bond Rotation
- Introduction to Assigning (R) and (S): The Cahn-Ingold-Prelog Rules
- Assigning Cahn-Ingold-Prelog (CIP) Priorities (2) - The Method of Dots
- Enantiomers vs Diastereomers vs The Same? Two Methods For Solving Problems
- Assigning R/S To Newman Projections (And Converting Newman To Line Diagrams)
- How To Determine R and S Configurations On A Fischer Projection
- The Meso Trap
- Optical Rotation, Optical Activity, and Specific Rotation
- Optical Purity and Enantiomeric Excess
- What's a Racemic Mixture?
- Chiral Allenes And Chiral Axes
- Stereochemistry Practice Problems and Quizzes
08 Substitution 188bet½ð±¦²©¹ÙÍøµÇ¼
- Nucleophilic Substitution 188bet½ð±¦²©¹ÙÍøµÇ¼ - Introduction
- Two Types of Nucleophilic Substitution 188bet½ð±¦²©¹ÙÍøµÇ¼
- The SN2 Mechanism
- Why the SN2 Reaction Is Powerful
- The SN1 Mechanism
- The Conjugate Acid Is A Better Leaving Group
- Comparing the SN1 and SN2 188bet½ð±¦²©¹ÙÍøµÇ¼
- Polar Protic? Polar Aprotic? Nonpolar? All About Solvents
- Steric Hindrance is Like a Fat Goalie
- Common Blind Spot: Intramolecular 188bet½ð±¦²©¹ÙÍøµÇ¼
- Substitution Practice - SN1
- Substitution Practice - SN2
09 Elimination 188bet½ð±¦²©¹ÙÍøµÇ¼
- Elimination 188bet½ð±¦²©¹ÙÍøµÇ¼ (1): Introduction And The Key Pattern
- Elimination 188bet½ð±¦²©¹ÙÍøµÇ¼ (2): The Zaitsev Rule
- Elimination 188bet½ð±¦²©¹ÙÍøµÇ¼ Are Favored By Heat
- Two Elimination Reaction Patterns
- The E1 Reaction
- The E2 Mechanism
- E1 vs E2: Comparing the E1 and E2 188bet½ð±¦²©¹ÙÍøµÇ¼
- Antiperiplanar Relationships: The E2 Reaction and Cyclohexane Rings
- Bulky Bases in Elimination 188bet½ð±¦²©¹ÙÍøµÇ¼
- Comparing the E1 vs SN1 188bet½ð±¦²©¹ÙÍøµÇ¼
- Elimination (E1) 188bet½ð±¦²©¹ÙÍøµÇ¼ With Rearrangements
- E1cB - Elimination (Unimolecular) Conjugate Base
- Elimination (E1) Practice Problems And Solutions
- Elimination (E2) Practice Problems and Solutions
10 Rearrangements
11 SN1/SN2/E1/E2 Decision
- Identifying Where Substitution and Elimination 188bet½ð±¦²©¹ÙÍøµÇ¼ Happen
- Deciding SN1/SN2/E1/E2 (1) - The Substrate
- Deciding SN1/SN2/E1/E2 (2) - The Nucleophile/Base
- SN1 vs E1 and SN2 vs E2 : The Temperature
- Deciding SN1/SN2/E1/E2 - The Solvent
- Wrapup: The Key Factors For Determining SN1/SN2/E1/E2
- Alkyl Halide Reaction Map And Summary
- SN1 SN2 E1 E2 Practice Problems
12 Alkene 188bet½ð±¦²©¹ÙÍøµÇ¼
- E and Z Notation For Alkenes (+ Cis/Trans)
- Alkene Stability
- Alkene Addition 188bet½ð±¦²©¹ÙÍøµÇ¼: "Regioselectivity" and "Stereoselectivity" (Syn/Anti)
- Stereoselective and Stereospecific 188bet½ð±¦²©¹ÙÍøµÇ¼
- Hydrohalogenation of Alkenes and Markovnikov's Rule
- Hydration of Alkenes With Aqueous Acid
- Rearrangements in Alkene Addition 188bet½ð±¦²©¹ÙÍøµÇ¼
- Halogenation of Alkenes and Halohydrin Formation
- Oxymercuration Demercuration of Alkenes
- Hydroboration Oxidation of Alkenes
- m-CPBA (meta-chloroperoxybenzoic acid)
- OsO4 (Osmium Tetroxide) for Dihydroxylation of Alkenes
- Palladium on Carbon (Pd/C) for Catalytic Hydrogenation of Alkenes
- Cyclopropanation of Alkenes
- A Fourth Alkene Addition Pattern - Free Radical Addition
- Alkene 188bet½ð±¦²©¹ÙÍøµÇ¼: Ozonolysis
- Summary: Three Key Families Of Alkene Reaction Mechanisms
- Synthesis (4) - Alkene Reaction Map, Including Alkyl Halide 188bet½ð±¦²©¹ÙÍøµÇ¼
- Alkene 188bet½ð±¦²©¹ÙÍøµÇ¼ Practice Problems
13 Alkyne 188bet½ð±¦²©¹ÙÍøµÇ¼
- Acetylides from Alkynes, And Substitution 188bet½ð±¦²©¹ÙÍøµÇ¼ of Acetylides
- Partial Reduction of Alkynes With Lindlar's Catalyst
- Partial Reduction of Alkynes With Na/NH3 To Obtain Trans Alkenes
- Alkyne Hydroboration With "R2BH"
- Hydration and Oxymercuration of Alkynes
- Hydrohalogenation of Alkynes
- Alkyne Halogenation: Bromination, Chlorination, and Iodination of Alkynes
- Alkyne 188bet½ð±¦²©¹ÙÍøµÇ¼ - The "Concerted" Pathway
- Alkenes To Alkynes Via Halogenation And Elimination 188bet½ð±¦²©¹ÙÍøµÇ¼
- Alkynes Are A Blank Canvas
- Synthesis (5) - 188bet½ð±¦²©¹ÙÍøµÇ¼ of Alkynes
- Alkyne 188bet½ð±¦²©¹ÙÍøµÇ¼ Practice Problems With Answers
14 Alcohols, Epoxides and Ethers
- Alcohols - Nomenclature and Properties
- Alcohols Can Act As Acids Or Bases (And Why It Matters)
- Alcohols - Acidity and Basicity
- The Williamson Ether Synthesis
- Ethers From Alkenes, Tertiary Alkyl Halides and Alkoxymercuration
- Alcohols To Ethers via Acid Catalysis
- Cleavage Of Ethers With Acid
- Epoxides - The Outlier Of The Ether Family
- Opening of Epoxides With Acid
- Epoxide Ring Opening With Base
- Making Alkyl Halides From Alcohols
- Tosylates And Mesylates
- PBr3 and SOCl2
- Elimination 188bet½ð±¦²©¹ÙÍøµÇ¼ of Alcohols
- Elimination of Alcohols To Alkenes With POCl3
- Alcohol Oxidation: "Strong" and "Weak" Oxidants
- Demystifying The Mechanisms of Alcohol Oxidations
- Protecting Groups For Alcohols
- Thiols And Thioethers
- Calculating the oxidation state of a carbon
- Oxidation and Reduction in Organic Chemistry
- Oxidation Ladders
- SOCl2 Mechanism For Alcohols To Alkyl Halides: SN2 versus SNi
- Alcohol 188bet½ð±¦²©¹ÙÍøµÇ¼ Roadmap (PDF)
- Alcohol Reaction Practice Problems
- Epoxide Reaction Quizzes
- Oxidation and Reduction Practice Quizzes
15 Organometallics
- What's An Organometallic?
- Formation of Grignard and Organolithium Reagents
- Organometallics Are Strong Bases
- 188bet½ð±¦²©¹ÙÍøµÇ¼ of Grignard Reagents
- Protecting Groups In Grignard 188bet½ð±¦²©¹ÙÍøµÇ¼
- Synthesis Problems Involving Grignard Reagents
- Grignard 188bet½ð±¦²©¹ÙÍøµÇ¼ And Synthesis (2)
- Organocuprates (Gilman Reagents): How They're Made
- Gilman Reagents (Organocuprates): What They're Used For
- The Heck, Suzuki, and Olefin Metathesis 188bet½ð±¦²©¹ÙÍøµÇ¼ (And Why They Don't Belong In Most Introductory Organic Chemistry Courses)
- Reaction Map: 188bet½ð±¦²©¹ÙÍøµÇ¼ of Organometallics
- Grignard Practice Problems
16 Spectroscopy
- Degrees of Unsaturation (or IHD, Index of Hydrogen Deficiency)
- Conjugation And Color (+ How Bleach Works)
- Introduction To UV-Vis Spectroscopy
- UV-Vis Spectroscopy: Absorbance of Carbonyls
- UV-Vis Spectroscopy: Practice Questions
- Bond Vibrations, Infrared Spectroscopy, and the "Ball and Spring" Model
- Infrared Spectroscopy: A Quick Primer On Interpreting Spectra
- IR Spectroscopy: 4 Practice Problems
- 1H NMR: How Many Signals?
- Homotopic, Enantiotopic, Diastereotopic
- Diastereotopic Protons in 1H NMR Spectroscopy: Examples
- 13-C NMR - How Many Signals
- Liquid Gold: Pheromones In Doe Urine
- Natural Product Isolation (1) - Extraction
- Natural Product Isolation (2) - Purification Techniques, An Overview
- Structure Determination Case Study: Deer Tarsal Gland Pheromone
17 Dienes and MO Theory
- What To Expect In Organic Chemistry 2
- Are these molecules conjugated?
- Conjugation And Resonance In Organic Chemistry
- Bonding And Antibonding Pi Orbitals
- Molecular Orbitals of The Allyl Cation, Allyl Radical, and Allyl Anion
- Pi Molecular Orbitals of Butadiene
- 188bet½ð±¦²©¹ÙÍøµÇ¼ of Dienes: 1,2 and 1,4 Addition
- Thermodynamic and Kinetic Products
- More On 1,2 and 1,4 Additions To Dienes
- s-cis and s-trans
- The Diels-Alder Reaction
- Cyclic Dienes and Dienophiles in the Diels-Alder Reaction
- Stereochemistry of the Diels-Alder Reaction
- Exo vs Endo Products In The Diels Alder: How To Tell Them Apart
- HOMO and LUMO In the Diels Alder Reaction
- Why Are Endo vs Exo Products Favored in the Diels-Alder Reaction?
- Diels-Alder Reaction: Kinetic and Thermodynamic Control
- The Retro Diels-Alder Reaction
- The Intramolecular Diels Alder Reaction
- Regiochemistry In The Diels-Alder Reaction
- The Cope and Claisen Rearrangements
- Electrocyclic 188bet½ð±¦²©¹ÙÍøµÇ¼
- Electrocyclic Ring Opening And Closure (2) - Six (or Eight) Pi Electrons
- Diels Alder Practice Problems
- Molecular Orbital Theory Practice
18 Aromaticity
- Introduction To Aromaticity
- Rules For Aromaticity
- Huckel's Rule: What Does 4n+2 Mean?
- Aromatic, Non-Aromatic, or Antiaromatic? Some Practice Problems
- Antiaromatic Compounds and Antiaromaticity
- The Pi Molecular Orbitals of Benzene
- The Pi Molecular Orbitals of Cyclobutadiene
- Frost Circles
- Aromaticity Practice Quizzes
19 188bet½ð±¦²©¹ÙÍøµÇ¼ of Aromatic Molecules
- Electrophilic Aromatic Substitution: Introduction
- Activating and Deactivating Groups In Electrophilic Aromatic Substitution
- Electrophilic Aromatic Substitution - The Mechanism
- Ortho-, Para- and Meta- Directors in Electrophilic Aromatic Substitution
- Understanding Ortho, Para, and Meta Directors
- Why are halogens ortho- para- directors?
- Disubstituted Benzenes: The Strongest Electron-Donor "Wins"
- Electrophilic Aromatic Substitutions (1) - Halogenation of Benzene
- Electrophilic Aromatic Substitutions (2) - Nitration and Sulfonation
- EAS 188bet½ð±¦²©¹ÙÍøµÇ¼ (3) - Friedel-Crafts Acylation and Friedel-Crafts Alkylation
- Intramolecular Friedel-Crafts 188bet½ð±¦²©¹ÙÍøµÇ¼
- Nucleophilic Aromatic Substitution (NAS)
- Nucleophilic Aromatic Substitution (2) - The Benzyne Mechanism
- 188bet½ð±¦²©¹ÙÍøµÇ¼ on the "Benzylic" Carbon: Bromination And Oxidation
- The Wolff-Kishner, Clemmensen, And Other Carbonyl Reductions
- More 188bet½ð±¦²©¹ÙÍøµÇ¼ on the Aromatic Sidechain: Reduction of Nitro Groups and the Baeyer Villiger
- Aromatic Synthesis (1) - "Order Of Operations"
- Synthesis of Benzene Derivatives (2) - Polarity Reversal
- Aromatic Synthesis (3) - Sulfonyl Blocking Groups
- Birch Reduction
- Synthesis (7): Reaction Map of Benzene and Related Aromatic Compounds
- Aromatic 188bet½ð±¦²©¹ÙÍøµÇ¼ and Synthesis Practice
- Electrophilic Aromatic Substitution Practice Problems
20 Aldehydes and Ketones
- What's The Alpha Carbon In Carbonyl Compounds?
- Nucleophilic Addition To Carbonyls
- Aldehydes and Ketones: 14 188bet½ð±¦²©¹ÙÍøµÇ¼ With The Same Mechanism
- Sodium Borohydride (NaBH4) Reduction of Aldehydes and Ketones
- Grignard Reagents For Addition To Aldehydes and Ketones
- Wittig Reaction
- Hydrates, Hemiacetals, and Acetals
- Imines - Properties, Formation, 188bet½ð±¦²©¹ÙÍøµÇ¼, and Mechanisms
- All About Enamines
- Breaking Down Carbonyl Reaction Mechanisms: 188bet½ð±¦²©¹ÙÍøµÇ¼ of Anionic Nucleophiles (PartÌý2)
- Aldehydes Ketones Reaction Practice
21 Carboxylic Acid Derivatives
- Nucleophilic Acyl Substitution (With Negatively Charged Nucleophiles)
- Addition-Elimination Mechanisms With Neutral Nucleophiles (Including Acid Catalysis)
- Basic Hydrolysis of Esters - Saponification
- Transesterification
- Proton Transfer
- Fischer Esterification - Carboxylic Acid to Ester Under Acidic Conditions
- Lithium Aluminum Hydride (LiAlH4) For Reduction of Carboxylic Acid Derivatives
- LiAlH[Ot-Bu]3 For The Reduction of Acid Halides To Aldehydes
- Di-isobutyl Aluminum Hydride (DIBAL) For The Partial Reduction of Esters and Nitriles
- Amide Hydrolysis
- Thionyl Chloride (SOCl2) And Conversion of Carboxylic Acids to Acid Halides
- Diazomethane (CH2N2)
- Carbonyl Chemistry: Learn Six Mechanisms For the Price Of One
- Making Music With Mechanisms (PADPED)
- Carboxylic Acid Derivatives Practice Questions
22 Enols and Enolates
- Keto-Enol Tautomerism
- Enolates - Formation, Stability, and Simple 188bet½ð±¦²©¹ÙÍøµÇ¼
- Kinetic Versus Thermodynamic Enolates
- Aldol Addition and Condensation 188bet½ð±¦²©¹ÙÍøµÇ¼
- 188bet½ð±¦²©¹ÙÍøµÇ¼ of Enols - Acid-Catalyzed Aldol, Halogenation, and Mannich 188bet½ð±¦²©¹ÙÍøµÇ¼
- Claisen Condensation and Dieckmann Condensation
- Decarboxylation
- The Malonic Ester and Acetoacetic Ester Synthesis
- The Michael Addition Reaction and Conjugate Addition
- The Robinson Annulation
- Haloform Reaction
- The Hell–Volhard–Zelinsky Reaction
- Enols and Enolates Practice Quizzes
23 Amines
- The Amide Functional Group: Properties, Synthesis, and Nomenclature
- Basicity of Amines And pKaH
- 5 Key Basicity Trends of Amines
- The Mesomeric Effect And Aromatic Amines
- Nucleophilicity of Amines
- Alkylation of Amines (Sucks!)
- Reductive Amination
- The Gabriel Synthesis
- Some 188bet½ð±¦²©¹ÙÍøµÇ¼ of Azides
- The Hofmann Elimination
- The Hofmann and Curtius Rearrangements
- The Cope Elimination
- Protecting Groups for Amines - Carbamates
- The Strecker Synthesis of Amino Acids
- Introduction to Peptide Synthesis
- 188bet½ð±¦²©¹ÙÍøµÇ¼ of Diazonium Salts: Sandmeyer and Related 188bet½ð±¦²©¹ÙÍøµÇ¼
- Amine Practice Questions
24 Carbohydrates
- D and L Notation For Sugars
- Pyranoses and Furanoses: Ring-Chain Tautomerism In Sugars
- What is Mutarotation?
- Reducing Sugars
- The Big Damn Post Of Carbohydrate-Related Chemistry Definitions
- The Haworth Projection
- Converting a Fischer Projection To A Haworth (And Vice Versa)
- 188bet½ð±¦²©¹ÙÍøµÇ¼ of Sugars: Glycosylation and Protection
- The Ruff Degradation and Kiliani-Fischer Synthesis
- Isoelectric Points of Amino Acids (and How To Calculate Them)
- Carbohydrates Practice
- Amino Acid Quizzes
25 Fun and Miscellaneous
- A Gallery of Some Interesting Molecules From Nature
- Screw Organic Chemistry, I'm Just Going To Write About Cats
- On Cats, Part 1: Conformations and Configurations
- On Cats, Part 2: Cat Line Diagrams
- On Cats, Part 4: Enantiocats
- On Cats, Part 6: Stereocenters
- Organic Chemistry Is Shit
- The Organic Chemistry Behind "The Pill"
- Maybe they should call them, "Formal Wins" ?
- Why Do Organic Chemists Use Kilocalories?
- The Principle of Least Effort
- Organic Chemistry GIFS - Resonance Forms
- Reproducibility In Organic Chemistry
- What Holds The Nucleus Together?
- How 188bet½ð±¦²©¹ÙÍøµÇ¼ Are Like Music
- Organic Chemistry and the New MCAT
26 Organic Chemistry Tips and Tricks
- Common Mistakes: Formal Charges Can Mislead
- Partial Charges Give Clues About Electron Flow
- Draw The Ugly Version First
- Organic Chemistry Study Tips: Learn the Trends
- The 8 Types of Arrows In Organic Chemistry, Explained
- Top 10 Skills To Master Before An Organic Chemistry 2 Final
- Common Mistakes with Carbonyls: Carboxylic Acids... Are Acids!
- Planning Organic Synthesis With "Reaction Maps"
- Alkene Addition Pattern #1: The "Carbocation Pathway"
- Alkene Addition Pattern #2: The "Three-Membered Ring" Pathway
- Alkene Addition Pattern #3: The "Concerted" Pathway
- Number Your Carbons!
- The 4 Major Classes of 188bet½ð±¦²©¹ÙÍøµÇ¼ in Org 1
- How (and why) electrons flow
- Grossman's Rule
- Three Exam Tips
- A 3-Step Method For Thinking Through Synthesis Problems
- Putting It Together
- Putting Diels-Alder Products in Perspective
- The Ups and Downs of Cyclohexanes
- The Most Annoying Exceptions in Org 1 (Part 1)
- The Most Annoying Exceptions in Org 1 (Part 2)
- The Marriage May Be Bad, But the Divorce Still Costs Money
- 9 Nomenclature Conventions To Know
- Nucleophile attacksÌýElectrophile
27 Case Studies of Successful O-Chem Students
- Success Stories: How Corina Got The The "Hard" Professor - And Got An A+ Anyway
- How Helena Aced Organic Chemistry
- From a "Drop" To B+ in Org 2 � How A Hard Working Student Turned It Around
- How Serge Aced Organic Chemistry
- Success Stories: How Zach Aced Organic Chemistry 1
- Success Stories: How Kari Went From C� to B+
- How Esther Bounced Back From a "C" To Get A's In Organic Chemistry 1 And 2
- How Tyrell Got The Highest Grade In Her Organic Chemistry Course
- This Is Why Students Use Flashcards
- Success Stories: How Stu Aced Organic Chemistry
- How John Pulled Up His Organic Chemistry Exam Grades
- Success Stories: How Nathan Aced Organic Chemistry (Without It Taking Over His Life)
- How Chris Aced Org 1 and Org 2
- Interview: How Jay Got an A+ In Organic Chemistry
- How to Do Well in Organic Chemistry: One Student's Advice
- "America's Top TA" Shares His Secrets For Teaching O-Chem
- "Organic Chemistry Is Like..." - A Few Metaphors
- How To Do Well In Organic Chemistry: Advice From A Tutor
- Guest post: "I went from being afraid of tests to actually looking forward to them".
To answer your comment I would like to remmember you that in electrophic addition in alkenes the slow step of mechanism is the addition of electrophile. In the bleach, HOCl decompose to OH- and Cl+. bcose of this the base (OH-) do not attack the poliene before the addition of electrophile C+
Please feel free to be in touched to clarified your doubts
Hi! Your post is very interesting and I think I can use the info here for my art project. I’m planning to make flowers out of leaves. The goal is to remove all the colors from the leaves but not get a skeleton-like effect. The leaves will be all-white and ready for dyeing. I’m thinking of of using clorox and hydrogen peroxide since they are readily available, unlike other chemicals which would need special govt permission for me to buy here in my country. Are clorox and peroxide enough? I would greatly appreciate your help because this project is very important to me since it can potentially generate livelihood for the less fortunate people in my place. Thank you!
I don’t know that you’d end up with white leaves. You’d certainly eliminate the colors from chlorophyll and the carotenoids, but those aren’t the only pigments in leaves. The most likely event to my mind is that you’d end up with brown leaves.
> But it will have to wait until the next post for a full treatment.
no link to next / prev posts
tiny font in the diagram texts; cannot read
Put in a link. Thank you!
Try blowing up the images.
I’m still confused about bleach. Here, we are saying that the chlorine is electrophilic, which makes perfect sense…and generally, we say that bleach is a strong oxidant, again suggesting that it will be accepting electrons.
But we also generally say that bleach is a strong base. And by that definition, it should be donating electrons…this is my confusion. How can it be a base and an oxidizing agent at the same time, when the definitions are seemingly opposite?
Hi Christine – in bleach, the two sides of the molecule have different behaviours. The electrophilic and oxidizing part is the Cl. Bleach can act as a base (although this is less likely) through the hydroxide functionality, i.e. the terminal O(-).
It is so nostalgic to re-learn the long-forgotten things! Keep up your good work :)
The latex rubber example is a little bit of apples and oranges. The white color is common for any latex/emulsion and it arise from the physical structure of the dispersion – the emulsion particles scatter all light. A better comparison would be a dried latex, but they are typically light yellow due to impurities.
But this got me thinking: what would happen if you dispersed any of the conjugated molecules from above in an emulsion. Would the whiteness from the scattering dominate the absorption of the conjugation? I bet it would, but I really don’t know.
Thanks John, as always. Good point about the dispersion. I never think about the polymer angles. I delegate that to you!